A physicist, a mathematician and an art historian have produced what they feel is the first quantitative analysis of Jackson Pollock.
“His particular painting technique essentially lets physics be a player in the creative process,” said physicist Andrzej Herczynski of Boston College, coauthor of a new paper in Physics Today that analyzes the physics in Pollock’s art. “To the degree that he lets physics take a role in the painting process, he is inviting physics to be a coauthor of his pieces.”
Pollock’s unique technique — letting paint drip and splatter on the floor rather than spreading it on a vertical canvas — revolutionized the art world in the 1940s. The resulting streaks and blobs look haphazard, but art historians and, more recently, physicists argue they’re anything but. Some have suggested that the snarls of paint have lasting appeal because they reflect fractal geometry that shows up in clouds and coast lines.